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Abstract. Recent data of the reaction pd → (pp)n with a fast forward pp pair with small excitation energy
is analyzed within a covariant approach based on the Bethe-Salpeter formalism. Relativistic effects in
cross-section are extracted and found to be large. It is demonstrated that the node of the non-relativistic
amplitude is shifted and masked by relativistic effects from Lorentz boost and the negative-energy P
components in the 1S0 Bethe-Salpeter amplitude of the pp pair.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 25.10.+s Nuclear
reactions involving few-nucleon systems

1 Introduction

The investigation of hadronic processes at high energies
provides a refinement of information about strong inter-
action at short distances. Nowadays, large research pro-
grams of experimental studies of processes with polar-
ized particles are in progress. Important are setups with
deuteron targets or beams [1–3], since the deuteron serves
as a unique source of information on neutron properties
at high transferred momenta, the knowledge of which al-
lows, e.g., to check a number of QCD predictions and sum
rules. Of interest is furthermore the study of nucleon res-
onances, effective meson-nucleon models, NN potentials,
etc. In this line is the investigation of the deuteron break-
up reaction with a fast pp pair at low excitation energy,
proposed in [3] and with first results reported in [4].

One motivation for the experiment [4] was the possi-
bility to investigate the off-mass-shell effects in NN in-
teractions. As predicted in [3–5], at a certain initial en-
ergy of the beam protons, the cross-section should exhibit
a deep minimum, corresponding to the node of the non-
relativistic 1S0 wave function of the two outgoing pro-
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tons, provided the non-relativistic picture holds and off-
mass-shell effects can be neglected. The recent data [4]
exhibits, however, a completely different behavior: the
cross-section is smoothly decreasing; there is no sign of
a pronounced minimum. It is found within the usual non-
relativistic framework that accounting for corrections be-
yond the one-nucleon-exchange mechanism and employing
the most recent NN potentials like CD Bonn [6] instead
of Reid soft-core and Paris ones improve the agreement
with the data [7].

The considered reaction with the production of a pp
pair in an 1S0 state is particularly interesting since here
several additional mechanisms beyond the one-nucleon ex-
change are expected to be of sub-leading order. For in-
stance, because of isospin invariance, the contribution of
∆ isobars is much smaller than in, e.g., the kinematically
similar reaction of elastic pd scattering [5,8,9].

It is clear that a purely non-relativistic treatment of
this process can become inadequate. There are two basic
reasons: i) the high virtuality of the proton in the deuteron
at the considered kinematics, ii) the large total momen-
tum of the final pp pair. Consequently, other approaches
which take into account relativistic effects and the off-
mass-shellness of the interacting nucleons are desired. The
Bethe-Salpeter (BS) formalism can serve as an appro-
priate approach to the problem, because the off-mass-
shellness of the nucleons is an intrinsic feature of the BS
equation. Moreover, the solution of the BS equation, be-
ing manifestly covariant, incorporates genuine relativistic
effects (Lorenz boosts, negative-energy components, etc.).
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Fig. 1. Kinematics of the process (1).

In the present paper we use the BS approach to ana-
lyze the data [4] on deuteron break-up with the emission
of a fast forward pp pair [10]. The main goal of this paper
is to extract the relativistic effects and investigate their in-
fluence on the observables. The calculation is based on our
solution of the BS equation for the deuteron with a real-
istic one-boson-exchange kernel [11]. The final-state inter-
action of the two protons is treated also within the BS for-
malism, by solving the BS equation for the t-matrix within
the one-iteration approximation [8,12]. In doing so, a big
deal of off-mass-shell effects and relativistic corrections are
taken into account already within the relativistic spectator
mechanism. In particular, as shown in [8,12], an account of
the P -waves within the BS formalism exactly corresponds
to non-relativistic calculations of meson-exchange current
corrections from the NN̄ pair production.

2 Kinematics

In this paper we follow the basic ideas from [13]. Let us
consider the process

p + d = (p1p2)(0◦) + n(180◦) (1)

at low excitation energy of the pair (Ex ∼ 0–3 MeV) and
intermediate initial kinetic energies Tp ∼ 0.6–2.0 GeV cor-
responding to the conditions at the Cooler Synchrotron
COSY in the experiment [3,4]. At such low values of
Ex, the main contribution to the final state of the pp
pair in the continuum comes from the 1S0 configuration.
In the one-nucleon-exchange approximation this reaction
can be represented by the diagram depicted in fig. 1,
where the following notation is adopted: p = (Ep,p) and
n = (En,n) are the four-momenta of the incoming (beam)
proton and outgoing (not registered) neutron, Pf is the
total four-momentum of the pp pair, which is the sum of
the corresponding four-momenta of the detected protons,
p1 = (E1,p1), p2 = (E2,p2). The invariant mass of the pp
pair is M2

pp = P 2
f = (2m + Ex)2, where m stands for the

nucleon mass and Ex is the excitation energy. Our cal-
culations are performed in the laboratory system where
the deuteron is at rest. For specific purposes, the center
of mass of the pair will be considered as well, where all
relevant quantities are superscripted with asterisks.

A peculiarity of the process (1) is that the transferred
momentum from the initial proton to the second proton
in the pair is rather high. Moreover, from the kinemat-
ics one finds that the momentum of the neutron is also

high enough (|n| ∼ 0.3–0.5 GeV/c), which implies that,
since the outgoing neutron is on-mass-shell, the proton
inside the deuteron was essentially off-mass-shell before
the interaction. Correspondingly, it becomes clear that the
process of NN interaction in the upper part of the dia-
gram is more involved than an elastic interaction. For in-
stance, let us consider a typical kinematical situation, say
|p| = 1.22 GeV/c, θ′1 ∼ 4◦, excitation energy Ex = 3 MeV
and |p1| = 0.765 GeV/c. This means that the neutron
momentum is |n| � 0.5 GeV/c, i.e., the four-momentum
of the off-mass-shell proton was q = (Md −En,−n). Now,
if one supposes that in the upper vertex an elastic pro-
cess of two on-mass-shell protons happens, then only one
kinematical quantity would be necessary to describe the
process, e.g., at given |p1| = 0.765 GeV/c the scattering
angle would be ∼ 28◦ in the elastic kinematics (instead of
4◦ in the full reaction); or at given scattering angle 4◦, the
momentum of the elastically scattered proton would corre-
spond to |p1| = 1.21 GeV/c (|p2| = 0.334 GeV/c) instead
of the detected momentum |p1| � |p2| � 0.765 GeV/c.
This simple example evidences the quite complicate na-
ture of the NN interaction in the upper part of the dia-
gram. One can consider the upper vertex of the diagram
in fig. 1 as consisting of at least two steps: i) an inelas-
tic process which puts the target nucleon on-mass-shell,
and ii) an elastic interaction in the pp pair in the 1S0

final state. Since a large amount of the transferred en-
ergy is needed to locate the second proton on-mass-shell,
the relativistic corrections may play a crucial role here.
Within the BS approach the off-shell effects are governed
by some extra components of the BS amplitude usually
called P -waves, and their contributions to the observ-
ables can be identified as purely relativistic corrections
(see also [8]).

Another important feature of the process (1) is that the
final pp pair has a large total momentum |Pf |. It is easy
to find from the kinematics that for Tp ∼ 3 GeV one has
|Pf | ∼ 4.5 GeV/c. For such a high values of the total mo-
mentum it becomes almost evident that the final state of
pp pair cannot longer be described like in the rest system,
without Lorentz boost. The BS approach is fully covari-
ant, and in our further considerations we will point out the
effects of Lorentz boost explicitly. The detailed analysis of
the boost effects for the kinematically similar process of
elastic backward pd→ dp scattering can be found in [8].

3 Cross-section and matrix element

The invariant cross-section of the reaction (1) reads

d6σ =
1

(4π)5 λ(p, d)
|Mfi|2 dp1 dp2

E1E2

× δ (E0 + Ed − E1 − E2 − En) , (2)

where λ(p, d) is the flux factor, and Mfi the invariant
amplitude; the statistical factor 1/2 due to two identi-
cal particles (protons) in the final state has been already
included. The matrix element corresponding to the rela-
tivistic one-nucleon exchange depicted in fig. 1 in the BS
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approach has the form

Mfi = ū(s,n)(n̂−m)Ψd(n)

× [
(p̂2 +m)Ψ 1S0(p)(p̂1 −m)u(r,p)

]
, (3)

where u(r,p) (ū(s,n)) stands for the Dirac spinor of the
incident proton (outgoing neutron) with the spin projec-
tion r (s) and momentum p (n), Ψd(1S0) denotes the BS
amplitudes of the deuteron (pp pair in the continuum).
These amplitudes are considered as usual 4 × 4 matrices
in the spinor space. They can be decomposed over a com-
plete set of matrices, and the coefficients of such a decom-
position are known as the partial BS amplitudes. There
are eight independent partial amplitudes for the deuteron
and four such amplitudes for the 1S0 state. Their specific
form depends on the chosen matrix representation. In the
present paper we choose the spin angular basis in the ρ
spin representation to obtain the partial decomposition of
the deuteron BS amplitude Ψd in the laboratory system,
where deuteron is at rest (for details see [8]). For the final
1S0 state within the ρ spin classification the BS amplitude
in the center of mass of the NN pair is represented by four
partial amplitudes 1S++

0 , 1S−−
0 , 3P+−

0 and 3P−+
0 [12],

which, for the sake of brevity, in what follows are denoted
as g1, . . . , g4 [14]. In order to take into account the Lorenz
boost transformation to the laboratory system, it is nec-
essary to use the 1S0 amplitude in its covariant form:

√
4π Ψ 1S0(p) = −h1γ5 − h2

1
m

(γ5p̂1 + p̂2γ5)

−h3

(
γ5
p̂1 −m
m

− p̂2 +m

m
γ5

)

−h4
p̂2 +m

m
γ5
p̂1 −m
m

, (4)

where p1,2 = Pf/2 ± p, and p is the relative momentum.
The four Lorenz-invariant functions hi ≡ hi(Pf · p, p2) are
linear combinations of the amplitudes gi, i = 1, . . . , 4 [12].
Now it is sufficient to express the amplitude (3) in terms
of deuteron partial components and (4),

Mfi = (−1)
1
2−r K(1S0)

1√
8π(Md − 2En)

×
{√

2C1M
1
2 s 1

2−r

(
GS−GD√

2

)
+ 3δM,0δs,r

GD√
2

}
. (5)

Here the contribution K(1S0) from the upper part of the
diagram in fig. 1 is

K(1S0) =
√
Ep +m

En +m

[
h1

(
En +m− |n||p|

Ep +m

)

−h3
Md − 2En

m

(
En +m+

|n||p|
Ep +m

)]
. (6)

GS,D denote the BS vertices of the deuteron, h1, h3 are
the non-vanishing invariant partial components from (4).
The relation of the amplitudes hi (i = 1 . . . 4) to the
partial solutions of the BS equation in the NN center of
mass, gi, i = 1, . . . , 4 has a cumbersome form and can be

found, e.g., in [12]. In what follows we do not discuss the
contribution of the g2 (1S−−) and g4 (3P−+

0 ) components,
which in our case turn out to vanish exactly, keeping
only the g1 (1S++) component as the main one and the
P component or P -wave g3 (3P+−

0 ) as the one providing
purely relativistic correction. Let us note again that,
accounting for Lorentz-boost effects is achieved by using
covariant representation (4) of the BS amplitude (cf. [8]).

It is easy to check that for unpolarized particles the
cross-section factorizes in two independent parts, i.e.,

1
6

∑
s,r,M

|Mfi|2 � ∣∣K(1S0)
∣∣2 (

uS(n)2 + uD(n)2
)
, (7)

as it should be within the spectator mechanism with
1S0 (Lf = 0) in the final state (see also the discussion
in [15]). In eq. (7) uS and uD are the BS deuteron S- and
D-wave [8],

uS,D ≡ GS,D

4π
√

2Md(Md − 2E)
. (8)

In our numerical calculations we use the deuteron BS
amplitude from [11]. This solution has been obtained with
a realistic one-boson-exchange kernel with parameters ad-
justed so as to fit the known characteristics of the NN sys-
tem, e.g., phase shifts, static properties of the deuteron,
etc. (see [16,17] for details). It can be shown that within
the spectator mechanism the BS amplitude enters into the
cross-section as a combination of the square of its partial
amplitudes known as the relativistic momentum distribu-
tion of the deuteron within the BS formalism [18] (see
also eq. (7)). Our investigation [18,17] of this quantity
persuades that at values of intrinsic momenta typical for
the reaction (1) (|n| ∼ 0.4 GeV/c) the corrections from
the negative P -waves can safely be disregarded and, as
in the non-relativistic limit, one needs to consider only
the S and D components. Moreover, since in this interval
(|n| ∼ 0.2–0.5 GeV/c) the S component of the deuteron
BS vertex has a node (see fig. 2) the main contribution
from the lower part of the diagram fig. 1 comes from the
deuteron D-wave only.

For the 1S0 state in the continuum one should solve
the inhomogeneous BS equation for the functions gi, i =
1, . . . , 4 in the NN center of mass to obtain the invariant
amplitudes h1,3. The partial “++” components of the BS
vertices in the NN center of mass, for both the bound
and the scattering states, have a direct analogue with the
corresponding non-relativistic wave functions. This anal-
ogy can be understood from the formula (8): it can be
shown [17] that at low intrinsic relative momenta the BS
wave functions (8) basically coincide with non-relativistic
ones like, e.g., Bonn or Paris wave functions. Hence, due
to the low excitation energy of the pp pair, in express-
ing h1,3 via the partial amplitudes at rest one may safely
replace the “++” vertex by its non-relativistic analogue.
Relativistic effects are then included in boosting the 1S++

0
component to the deuteron’s center-of-mass system and
also by taking into account the contributions of the P com-
ponents in h1,3. To find the P -waves we solve the BS
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Fig. 2. The BS vertices GS(|n|, p0) (solid curve) and
GD(|n|, p0) (dotted curve) as functions of the neutron
3-momentum |n|. The relative energy is p0 = Md/2 − E(n).
The two dashed vertical lines show the range of the neutron
momentum reached at COSY for the reaction (1).

equation for the pair in its center of mass within the one-
iteration approximation [8,19], with the trial function as
the exact solution for the t-matrix within a separable po-
tential [20]. When seeking numerical solution for the BS
amplitude, one can solve the BS equation by the itera-
tion method with arbitrary trial functions. Our experience
shows that, as soon as the trial function is close to the re-
alistic solution, only few iterations are needed. Hence, if
the exact non-relativistic solution is taken as a trial func-
tion, then one or two iterations are sufficient to obtain the
solution in the whole kinematical region. As shown in [12],
the one-iteration approximation (OIA) provides us with a
very good result.

The inhomogeneous BS equation for the NN system
is given and discussed in details in [19]. Here we should
keep in mind that the partial components gi (i = 1 . . . 4)
are already the “connected amplitudes”, i.e., amplitudes
without the terms corresponding to free scattering. We
obtain for the P -waves

g3(k) = i g2πNN

[
Mpp√
π
V31(k, p∗)

−i
∞∫
0

dp p2

(2π)3
V31(k, p)

g1(p)
Mpp − 2Ep + iε

]
, (9)

where V31 is the corresponding partial kernel, and p∗ de-
notes the relative momentum of the pp pair in its center of
mass. Equation (9) has been obtained from the BS equa-
tion given in [19] and in its present form it does not con-
tain any cut-off (vertex) parameter. However, in finding
numerical solutions one usually introduces phenomenolog-

ical vertex dipole form factors, which, besides assuring a
good convergence, also simulate contributions from heav-
ier mesons in the exchange kernel. Evidently, their role
is insignificant at low exchanged momenta, but increases
with increasing momentum. Correspondingly, in our case
for values of the momentum near the node of the main
(++) 1S0 component, one can neglect the vertex form
factors and obtains

V31(|k|, |p|, µ2
π) =

πm

|p||k|EpEk
{|p|Q1(y) − |k|Q0(y)}

(10)
with QL(y) as Legendre function with the argument y =
(|p|2 + |k|2 + µ2

π − k2
0)/(2|p||k|) [19,12]. In eq. (10) the

square of the meson mass µ2
π in the argument of the par-

tial kernel indicates that the vertex πNN form factor has
been neglected and the meson propagator was taken in the
usual form, 1/(k2 − µ2

π). Accounting for the vertex form
factors leads to a renormalization of the coupling constant,

gπNN −→ gπNN
µ2

π − Λ2

k2 − Λ2
, (11)

which is equivalent to the replacement of the meson prop-
agator

1
k2 − µ2

π

−→ 1
k2 − µ2

π

(
µ2

π − Λ2

k2 − Λ2

)2

. (12)

Then, for the “renormalized” partial kernel, one obtains

V31(k, p) = V31(k, p, µ2
π) − V31(k, p, Λ2)

+(Λ2 − µ2
π)
∂V31(k, p, Λ2)

∂Λ2
, (13)

where the cutoff parameter Λ = 1.29 GeV is taken
from [11], and V31(k, p, Λ2) means the partial kernel (10)
with µ2

π → Λ2.
In the first iteration the trial function g1(k) is ex-

pressed via the non-relativistic t-matrix [20],

g1(k) = i (4π)5/2 m

2
tNR(k, p∗), (14)

where the normalization of tNR corresponds to

tNR(p∗, p∗) = − 2
πmp∗

eiδ0 sin δ0, with δ0 as the experi-

mentally known phase shift of the elastic pp scattering
in the 1S0 state. By using the Sokhotsky-Weierstrass
formula for the Cauchy-type integrals, one finally obtains

g3(k) =
ig2πNN√

π

[
MppV31(k, p∗)

{
1 − iπmp∗

2
tNR(p∗, p∗)

}

+mP
∞∫
0

dpp2V31(k, p)
tNR(p, p∗)
Ep∗ − Ep

]
. (15)

In fig. 3 results of numerical calculations of the energy
dependence of the 1S0 phase shifts within the OIA are
presented. It is seen that the adopted OIA assures a good
description of the experimental data in a large interval
of excitation energies of the pp pair. This agreement is a
prerequisite for the following analysis.



L.P. Kaptari et al.: Relativistic effects in proton-induced deuteron break-up at intermediate energies . . . 305

0 50 100 150 200 250 300 350

-20

0

20

40

60

δ (
1
S

0
) 

[d
eg

]

T
lab

 [MeV]

Fig. 3. The energy dependence of the 1S0 pp phase shift
computed within the BS formalism. Experimental data are
from [21].

4 Numerical results and discussion

In figs. 4 and 5 we present results of numerical calculations
of the five-fold cross-section dσ/dΩ1dΩ2d|p1| and the two-
fold cross-section dσ/dΩn (with Ωn as the solid angle of
the momentum of the neutron in the center of mass of the
reaction), integrated over the excitation energy in a range
Ex = 0–3 MeV. The calculations have been performed
with our numerical solution for the deuteron BS ampli-
tude with S and D partial components (inclusion of the P
components in the deuteron amplitude leads to negligibly
small corrections). The left panels in figs. 4 and 5 illus-
trate different contributions to the corresponding cross-
section from the upper part of the diagram, fig. 1, with
the lower part computed with the full deuteron (S and
D components) BS wave function. The dotted curves (left
panels) are results of non-relativistic calculations, while
the dashed curves include pure Lorentz boost effects, i.e.,
relativistic calculations with including the 1S++

0 compo-
nent only. It is clearly seen that the boost corrections are
fairly visible: they cause a significant shift of the minimum
of the cross-section. The agreement with data [4] at low
initial energies becomes better; however, the cross-section
is still too small at large values of Tp, see fig. 5. The thick
and thin solid curves in fig. 4 depict results of our rela-
tivistic calculations. The non-relativistic results are qual-
itatively abandoned: the minimum due to the node of the
wave function is completely hidden and the slope of the
cross-section at large values of Tp is changed. Indeed, fig. 5
reveals that an account of only “++” components is not
sufficient to describe the data [4]. However, a reasonable
description is achieved by taking into account all the rela-
tivistic effects, including the contribution of the negative-
energy P -waves, see thick and thin solid curves. With re-
spect to the discussion in [7], the perfect agreement of our
calculation without the form factor [13] (see thin curve)
and the data [4] must be considered as accidental. As seen
in fig. 5, the form factor pulls down the cross-section some-

Fig. 4. Five-fold cross-section as a function of the kinetic en-
ergy Tp of the incident proton. Left panel: The dotted curve
corresponds to a non-relativistic calculation, i.e., to the case
where only the “++” components in the 1S0 state are taken
into account and any Lorentz boost effect is ignored. The
dashed curve depicts results of a calculation with all relativis-
tic effects in “++” components. The solid thin curve is for the
results of a complete calculation with taking into account all
the relativistic effects including the contribution of P -waves
in the wave function of the pp pair computed by (15) with
V31(k, p, µ2

π) from (10), i.e., without cut-off vertex form fac-
tors. The solid thick curve is the analog to the thin one but
with taking into account the vertex form factor (13). The two
protons are supposed to be detected in forward direction, i.e.,
θ1 = θ2 = 0◦. Right panel: The S-wave (dotted curve) and
D-wave (dashed curve) contributions separately. Solid curve
as in the left panel.

Fig. 5. Differential cross-section in the center of mass inte-
grated over the excitation energy Ex as a function of the ki-
netic energy Tp of the incident proton. Notation is as in fig. 4.
Experimental data are from [4].

what below the data points, but it is still within the error
bars (we also may consider the thin curve as corresponding
to an upper limit, i.e. when the regularization is switched
off by Λ −→ ∞ in (13)). This leaves some space for im-
provements, e.g. by including effects discussed in [7]. Since
the aim of the present paper is to highlight the importance
of relativistic effects for the reaction under consideration,
we insist to postpone a systematic evaluation of further de-
tails within the BS formalism to a separate investigation.
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The right panels in figs. 4 and 5 illustrate the contri-
bution to the cross-sections of S and D components in
the BS amplitude of the deuteron, i.e., the contribution
from the lower part of the diagram, fig. 1; all curves in the
right panels have been obtained with taking into account
the P -waves and form factors in the upper vertex of the
diagram. It is clearly seen that in the whole range of the
kinetic energy Tp the contribution of the D-waves in the
deuteron dominates in the lower part of the diagram. This
is an important circumstance which can generate ambigu-
ities in non-relativistic calculations. So, since in the con-
sidered range of the intrinsic momenta the non-relativistic
deuteron momentum distribution computed within differ-
ent model potentials, such as Bonn or Paris group po-
tentials, manifests a rather different behaviour, the final
results become sensitive to the used potential (cf. results
of [5] and [7]). In contrast, covariant relativistic calcula-
tions of the momentum distribution, obtained within dif-
ferent formalisms, e.g., Bethe-Salpeter approach [11,16]
or Gross equation [22] give basically identical results [18].
Note also that, to large extent, the non-relativistic Paris
and RSC potentials provide the same momentum distri-
butions as in relativistic approaches.

Finally, note that, as demonstrated in refs. [8,12] for
reactions of pd and in near-threshold ed disintegration, the
inclusion of P -waves exactly recovers the non-relativistic
calculation with taking into account the NN̄ pair pro-
duction effects. Hence, in our case this is a hint that co-
variant calculations within the relativistic spectator mech-
anism contain already some contributions beyond the
one-nucleon-exchange mechanism in its traditional non-
relativistic meaning. Explicit calculations [5] of the meson-
exchange corrections show that within the traditional ef-
fective meson-nucleon theory, with phenomenological pa-
rameters fitted from the NN scattering data, a satisfac-
torily description of data cannot be achieved.

5 Summary

In summary, with account to the recent data [4] of the re-
action pd→ (pp)n we present first results of a calculation
within a covariant approach based on the Bethe-Salpeter
formalism. Our approach relies on a straightforward appli-
cation of the relativistic one-nucleon-exchange approxima-
tion. While effects beyond this approximation deserve fur-
ther systematic investigations, we can emphasize that rel-
ativistic effects (Lorentz boost, negative-energy P compo-
nents) in the description of the final pp pair are important
and responsible for the smooth decline of the cross-section.
We consider the process (1) as a unique example where the
impact of the relativistic effects completely changes the
non-relativistic picture, thus illustrating the importance
of a consistent relativistic approach to the problem.
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and S.S.S. acknowledge the warm hospitality of the nuclear
theory group in the Research Center Rossendorf. The work
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